Convergence method, properties and computational complexity for Lyapunov games

نویسندگان

  • Julio B. Clempner
  • Alexander S. Poznyak
چکیده

We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium point identified by the sink of the game graph. It is important to note that in previous works this convergence has not been guaranteed even if the Nash equilibrium point exists. The best reply dynamics result in a natural implementation of the behavior of a Lyapunov-like function. Therefore, a Lyapunov game has also the benefit that it is common knowledge of the players that only best replies are chosen. By the natural evolution of a Lyapunov-like function, no matter what, a strategy played once is not played again. As a construction example, we show that, for repeated games with bounded nonnegative cost functions within the class of differentiable vector functions whose derivatives satisfy the Lipschitz condition, a complex vector-function can be built, where each component is a function of the corresponding cost value and satisfies the condition of the Lyapunov-like function. The resulting vector Lyapunov-like function is a monotonic function which can only decrease over time. Then, a repeated game can be represented by a one-shot game. The functionality of the suggested method is successfully demonstrated by a simulated experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iteratively computation the Nash equilibrium points in the two-player positive games

We consider the linear quadratic differential games for positive linear systems with the feedback information structure and two players. The accelerated Newton method to obtain the stabilizing solution of a corresponding set of Riccati equations is presented in [6], where the convergence properties are established. In addition, the Lyapunov iterative method to compute the Nash equilibrium point...

متن کامل

Convergence analysis for pure stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria

In game theory the interaction among players obligates each player to develop a belief about the possible strategies of the other players, to choose a best-reply given those beliefs, and to look for an adjustment of the best-reply and the beliefs using a learning mechanism until they reach an equilibrium point. Usually, the behavior of an individual cost-function, when such best-reply strategie...

متن کامل

Reconstruction of the Fourier expansion of inputs of linear time-varying systems

In this paper we propose a general method to estimate periodic unknown input signals of finitedimensional linear time-varying systems. We present an infinite-dimensional observer that reconstructs the coefficients of the Fourier decomposition of such systems. Although the overall system is infinite dimensional, convergence of the observer can be proven using a standard Lyapunov approach along w...

متن کامل

[hal-00782034, v1] Learning Equilibria in Games by Stochastic Distributed Algorithms

We consider a class of fully stochastic and fully distributed algorithms, that we prove to learn equilibria in games. Indeed, we consider a family of stochastic distributed dynamics that we prove to converge weakly (in the sense of weak convergence for probabilistic processes) towards their mean-field limit, i.e an ordinary differential equation (ODE) in the general case. We focus then on a cla...

متن کامل

Continuous-time integral dynamics for Aggregative Game equilibrium seeking

In this paper, we consider continuous-time semidecentralized dynamics for the equilibrium computation in a class of aggregative games. Specifically, we propose a scheme where decentralized projected-gradient dynamics are driven by an integral control law. To prove global exponential convergence of the proposed dynamics to an aggregative equilibrium, we adopt a quadratic Lyapunov function argume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computer Science

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011